

N₂O, N₂ and NH₃ emissions following different slurry and digestate application techniques in growing crops

Caroline Buchen-Tschiskale¹, Roland Fuß¹, Reinhard Well¹, Thorsten Reinsch², Friedhelm Taube², Mareike Zutz², Hans-Werner Olfs³, Martin ten Huf³, Guido Recke³, Tobias Jorissen³, Reiner Ruser⁴, Christoph Essich⁴ and Heinz Flessa¹

¹Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

²Christian-Albrechts-University, Institute for Crop Science and Plant Breeding – Grass and Forage Science/Organic Agriculture, Kiel, Germany

³University of Applied Sciences Osnabrück, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück, Germany

⁴University Hohenheim, Institute of Crop Science, Department Fertilization and Soil Matter Dynamics (340i), Stuttgart, Germany

Background

 In Germany, about 95% of ammonia (NH₃) emissions originate from agriculture 40% from the application of slurry and digestate • With the amendment of the Fertilizer Ordinance 2017, the application of slurry and digestate in autumn on

Objective

Quantification of N_2O , NH_3

- In Germany, agriculture accounts for about 7% of total greenhouse gas (GHG) emissions 50% are produced in agricultural soils in the form of nitrous oxide (N₂O)
- arable land is strongly restricted
- The application of slurry and digestate will therefore increasingly take place in the spring into growing crops with near-ground application techniques and without the possibility of direct incorporation into the soil, which may enhance emissions

and N₂ emission following different slurry and digestate application techniques

Field sites & Sampling methods

 Randomised field plot trials (plot size: 54 or 81 m²) with four replicates (blocks) were established from 2019-2021 in a permanent grassland (GL) and in a crop rotation with winter wheat (WW) at each site in Schleswig-Holstein (SH), Lower Saxony (LS) and Baden-Wuerttemberg (BW)

Site	Сгор	Year	
SH:HO	Winter wheat	2019	2020
SH:BRE			
LS:OS			
BW:HOH			
SH:HS	Grassland	2019	2020
SH:LAG/GH			
LS:OS			
BW:HOH			

Treatments

Substrate	Treatments		
Cattle slurry (CS)	NO	Control	
	CAN	Calcium ammonium nitrate	
	TH:CS	Trailing hose	
	TH:CS+A	Trailing hose + Acid (H_2SO_4)	
	SI:CS	Slot injection	
	SI:CS+NI	Slot injection + Nitrification Inhibitor (DMPP)	

Experimental technology for different slurry application in growing crops: Trailing hose/shoe or slot injection

¹⁵N tracing experiment

- Experiment was conducted with undisturbed soil cores from the BW:WW-2020 site for 60 days
- Application of a ¹⁵N double labelling approach by labelling the NO₃⁻ pool with K¹⁵NO₃⁻ solution (4 kg N ha⁻¹) and the NH₄⁺ pool with ¹⁵N-labelled cattle slurry (68 kg N ha⁻¹)

Measurements

- NH₃ fluxes were measured using the "Drägertube" and the "Calibrated passive sampling" method (*Pacholski 2016*)
- N₂O fluxes were measured weekly using the "Closed chamber approach" (*Hutchingson and Mosier 1981*)
- Application rate was 170 kg N ha⁻¹ (split in 2 dressings)
- NH₃ fluxes were measured using the "Dräger-tube" method (*Pacholski 2016*)
- N₂O and N₂ emissions were measured using the modified ¹⁵N gas flux method with N₂-depleted atmosphere (*Well et al. 2019*)

Preliminary results

N₂O emission

Results

N₂ & N₂O emission

 No impact of application technique on N₂O and N₂, but 20 times higher N₂ than N₂O emission

Conclusions

- Highest NH₃ reduction potential compared to trailing hose/shoe application (TH/TS:CS) after acidification of cattle slurry (up to 58% at individual sites and years)
- Lower NH₃ reduction potential compared to TH/TS:CS after slot injection (SH:CS) and slot injection with addition of a nitrification inhibitor (SH:CS+NI)
- Large differences in N_2O emissions by site and year, with higher N_2O emissions in 2019, but lower impact of application technique on N_2O emissions
- ¹⁵N experiment indicated high N losses via N₂ at the winter wheat site of BW:HOH
- Data will be further evaluated in terms of yields and N uptake

References:

Hutchinson, G., Mosier, A., 1981. *Soil Sci. Soc. Am. J.* 45, 311-316. Pacholski, A., 2016. *JoVE 109*. Well R. et al., 2019 *RCM*. 33, 437–448.

The project is supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support programme.

aufgrund eines Beschlusses des Deutschen Bundestages