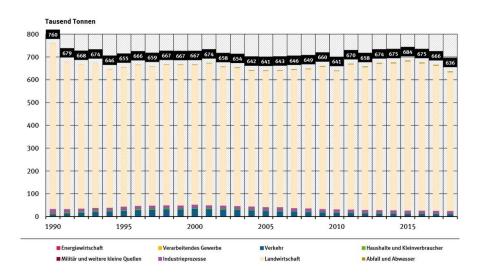


ANALYSE DER ÖKONOMISCHEN EFFIZIENZ DER APPLIKATION VON ANGESÄUERTEN ORGANISCHEN DÜNGEMITTELN AUF DEM FELD ANHAND DER METHODE DER VERMEIDUNGSKOSTENRECHNUNG

TOBIAS JORISSEN UND GUIDO RECKE

ALS TEIL DES VOM BMEL GEFÖRDERTEN VERBUNDPROJEKTS GÜLLEBEST

(MINDERUNG VON AMMONIAK- UND TREIBHAUSGASEMISSIONEN UND OPTIMIERUNG DER STICKSTOFFPRODUKTIVITÄT


DURCH INNOVATIVE TECHNIKEN DER GÜLLE- UND GÄRRESTEAUSBRINGUNG IN WACHSENDE BESTÄNDE)

Ammoniakemissionen (NH₃) nach Quellkategorien:

Quelle: Umweltbundesamt, Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen seit

1990; Stand 02/2020

NH₃-Vermeidungskosten bei Rindergülle:

Art der Abdeckung		Erdbecken					
	nutzbare Lagerkapazität [m³]						
	500	1 000	3 000	5000	7 500		
	Minderungskosten [€/kg NH ₃]						
Betondecke	5,65	5,65	5,65	-	-		
Zeltdach	11,56	8,39	6,04	4,87	-		
Schwimmfolie	7,99	6,36	5,31	4,70	3,82		
Blähton	3,57	3,18	3,18	3,15	3,10		
Stroh	5,03	4,51	4,04	3,92	4,27		

	Jährliche Verfahrensleistung [m³/a]					
Ausbringung	1 000	3 000	10 000	30 000	100 000	
	€/kg NH ₃					
Schleppschlauch	7,08	2,54	1,14	0,41	0,28	
Schleppschuh	5,06	2,57	1,77	1,50	-	
Schlitz (Scheiben)	3,70	2,04	1,47	1,63	0,44	
Grubber	2,76	2,33	1,41	1,54	0,40	
Einarbeitung innerhalb 1 h	0,60	0,60	0,60	0,60	0,60	
Einarbeitung innerhalb 4 h	0,65	0,65	0,65	0,65	0,65	
Verdünnung 1:1	5,93	5,93	4,55	3,63	2,52	

Quelle: Wulf et al. 2011, Kosten der Minderung von Ammoniakemissionen, KTBL Schrift 491

2 MATERIAL UND METHODIK

Versuchsaufbau:

- Versuchsjahr = 2019
- Winterweizen am Standort Kiel/Lagenburg (sandiger Lehm) und Hohenheim (schluffiger Lehm)
- 170 kg Stickstoff (N) durch Rindergülle mit/ohne Schwefelsäure (H₂SO₄) mittels
 Schleppschlauchverfahren in zwei gleichen Gaben
- Je Variante vier randomisierte Wiederholungen in 9 m x 9 m

Feldmessungen:

- Kornertrag ohne H₂SO₄: Kiel = 6,4 t FM/ha; Hohenheim = 11,4 t FM/ha
- Kornertrag mit H₂SO₄: Kiel = 7,0 t FM/ha; Hohenheim = 10,7 t FM/ha
- Strohertrag ohne H₂SO₄: Kiel = 2,4 t FM/ha; Hohenheim = 3,0 t FM/ha
- Strohertrag mit H₂SO₄: Kiel = 2,8 t FM/ha; Hohenheim = 3,8 t FM/ha
- NH₃-Vermeidungen durch H_2SO_4 : Kiel = 11,7 kg NH₃/ha; Hohenheim = 4,1 kg NH₃/ha

Fotos: Martin ten Huf und Caroline Buchen-Tschiskale

2 MATERIAL UND METHODIK

Datengrundlage:

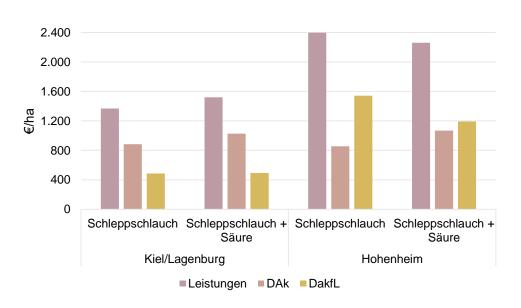
- Feldarbeit: Maschinenkosten, Dieselverbräuche, Arbeitszeiten und diverse Direktkosten
- Technik Säureapplikation: SyreN von BioCover; Säurepreis
- Säuregabe: Bis pH-Wert = 6,0; Kiel/Lagenburg = 6,5 l/m³, Hohenheim = 8,5 l/m³

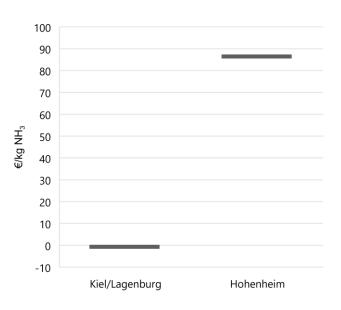
Ökonomische Modell:

- Systemgrenze = Bodenbearbeitung bis Strohbergung
- Direkt und arbeitserledigungskostenfreie Leistungen (DakfL) = Leistungen aus Verkauf von Korn und Stroh - Direktkosten (z.B. Saatgut) - Arbeitserledigungskosten (z.B. Diesel) (DAk)
- NH₃-Vermeidungskosten (€/kg NH₃) = ∆ DakfL (Schleppschlauch minus Schleppschlauch mit Säure) / ∆ NH₃-Emissionen (Schleppschlauch mit Säure minus Schleppschlauch)

(Quelle: KTBL 2021, div. Webanwendungen)

(Quelle: Nohrden 2018, Kosten der Ansäuerung von Gülle bei der Feldausbringung (Bachelorarbeit); Tamm und Vettik 2019, Economic analysis of using of slurry acidification technologies in BSR region (Baltic Slurry Acidification Project))


(Quelle: Feldmessungen in 2019)


Bild: www.biocover.dk

Wirtschaftlichkeit:

NH₃-Vermeidungskosten:

